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ABSTRACT
Recently, the percentage of people with hypertension is in-
creasing, and this phenomenon is widely concerned. At
the same time, wireless home Blood Pressure (BP) moni-
tors become accessible in people’s life. Since machine learn-
ing methods have made important contributions in different
fields, many researchers have tried to employ them in deal-
ing with medical problems. However, the existing studies for
BP prediction are all based on clinical data with short time
ranges. Besides, there do not exist works which can jointly
make use of historical measurement data (e.g. BP and heart
rate) and contextual data (e.g. age, gender, BMI and alti-
tude). Recurrent Neural Networks (RNNs), especially those
using Long Short-Term Memory (LSTM) units, can capture
long range dependencies, so they are effective in modeling
variable-length sequences. In this paper, we propose a novel
model named recurrent models with contextual layer, which
can model the sequential measurement data and contextual
data simultaneously to predict the trend of users’ BP. We
conduct our experiments on the BP data set collected from a
type of wireless home BP monitors, and experimental results
show that the proposed models outperform several compet-
itive compared methods.

1. INTRODUCTION
In recent years, the population of people with hyperten-

sion is rising, and this phenomenon becomes a major global
public health issue. According to World Health Organiza-
tion (WHO) [27], more than 20% adults worldwide have hy-
pertension till 2015. Latest studies have shown that patients
with hypertension have a high risk of many diseases, such
as stroke, heart failure, damage to eyes, etc [5, 8]. It is nec-
essary for patients to continuously observe their blood pres-
sure (BP). Hypertension guidelines [18] have recommended
the application of self-monitoring of BP in clinical practice.
Right now, about 70% of patients with hypertension reg-
ularly monitor their BP at home using the self-monitoring
devices [24]. Home BP monitoring is widely regarded as an
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Figure 1: Overview of the workflow of wireless home
BP monitors.

important complement of conventional office BP monitoring
in the hypertension management [25].

Conventional office BP is usually measured by the physi-
cian clinically. Compared to office BP monitoring, home BP
monitoring can provide more controlled and more regular su-
pervision. The use of home BP monitoring has been shown
to improve patients’ compliance [3] and avoid some biases
including white-coat hypertension [33]. By connecting to
smart phones, it provides a large amount of measurement
data, reflecting users’ recent physical condition. The data
can be used to model the variation of users’ BP and make
the prediction of future BP.

The data set used in this paper is collected from a type of
wireless home BP monitors. The workflow of the device is
shown as Figure 1. The monitors synchronize the measure-
ment data to the cloud server via smart phones, and the
server trains the BP prediction model with the historical
data. Users can get results of prediction made by the server
in real time. On the cloud platform, it is easy to access a
great amount of users’ measurement data, which is suitable
to be analyzed by machine learning methods.



Recently, machine learning methods have been employed
in dealing with numerous medical problems. Some researchers
use machine learning methods to predict the risk of stroke
[9], coronary heart disease [34] with office BP measurement
data. However, none of them take advantage of sequential
information. Some works [35] make prediction of BP based
on contextual information of users (e.g. BMI, age, smoke
level). Other works [30] use continuous BP measurements
in the Intensive Care Unit (ICU) to predict BP. But all
these works on BP prediction have difficulty in modeling
contextual information and sequential measurements simul-
taneously. Moreover, none of these works use the data from
home BP monitoring.

Support Vector Regression (SVR) [31], Gradient Boosted
Regression Tree (GBRT) [10], Factorization Machine (FM)
[29] and Multilayer Perceptron (MLP) are all classic regres-
sion models, and can be applied to BP prediction problem.
Though they perform numerical prediction efficiently, they
have two limitations. One is that they must use fixed-length
features; the other is that they cannot take full advantage of
the sequential dependency. Hidden Markov Model (HMM)
is a probabilistic graphical model. It is often used for se-
quential prediction. However, this method can only combine
several most recent components. To solve this problem, Re-
current Neural Network (RNN) and its variants, LSTM [17]
and GRU [6] have been successfully employed to model tem-
poral dependency for different applications, such as speech
recognition [15], video modeling [4], sequential click predic-
tion [36], location prediction [23] and recommendation sys-
tem [22]. They can capture long time dependency and non-
linear dynamics. RNNs led to much improvement in all the
tasks above.

In this paper, to predict the blood pressure, we propose
recurrent models with contextual layer, called RNN with
Contextual Layer (RNN-CL) and LSTM with Contextual
Layer (LSTM-CL). Users’ historical measurement data (e.g.
heart rate, BP) is arranged in chronological order. This type
of data is used as the input of the hidden layer in the recur-
rent structure. In this way, the dependency among blood
pressure measurements will be embedded into the recurrent
structure. Besides, contextual data (e.g. age, gender, BMI
and altitude) is helpful for making more personalized and
accurate prediction of BP. For example, a user with a high
Body Mass Index (BMI) value tends to have high BP [5].
Therefore, we add an extra layer to deal with contextual
data before the output layer. The activation function of
the extra layer is Rectified Linear Unit (ReLU), which can
avoid vanishing gradient problem. Finally, we combine the
features extracted from sequential measurement data with
contextual data to achieve a joint representation as the final
users’ BP condition. This representation is used to make
prediction of the accurate BP value. For the situation that
the users’ contextual data are vacant, we fill up the vacant
ones by several imputation strategies. The learning algo-
rithm of our models is a variant of back propagation through
time algorithm. It is used to learn parameters. Our contri-
butions are listed as follows:

• We introduce the recurrent models with contextual
layer to make numerical prediction of users’ BP. The
recurrent structure processes variable-length sequences
of users’ historical measurements, and an extra layer
extracts the features from contextual data. We com-

bine these two structures for better inferring users’ fu-
ture BP.

• We conduct experiments on a data set based on the
data collected from a type of wireless BP monitors.
The experiments reveal that our model can signifi-
cantly improve the accuracy of BP prediction. More-
over, the results show that KNN is the most suitable
method to fill up missing contextual data.

The rest of the paper is organized as follows. In section 2,
we review some related work on numerical prediction mod-
els and machine learning applications for medical problems.
Section 3 details the recurrent models with contextual layer
and the learning algorithm. In section 4 we introduce the
data we use in our experiments and the imputation strate-
gies for filling up the missing data. In section 5, we report
and analyze experimental results. Section 6 concludes our
work and discusses future research.

2. RELATED WORKS
In this section, we briefly review several related works on

classic regression and sequential prediction methods. Then
we introduce some applications of machine learning for med-
ical treatment, especially the works on BP.

2.1 Numerical Prediction Models
Linear Regression is the basic regression model. Its loss

is calculated by the difference between the output from the
model and the target. Only when the output is exactly
equivalent to the target can the loss be equal to zero. Sup-
port Vector Regression (SVR) [31] is the application of Sup-
port Vector Machine (SVM) for the case of regression. It is
efficient and well-performed, and is usually considered as a
baseline. Gradient Boosted Regression Trees (GBRT) [10]
is typically used with decision trees of a fixed size as base
learners and optimized by a boosting technique. GBRT is
an accurate and effective off-the-shelf procedure, so it is of-
ten used in a variety of areas such as web search ranking and
click through rate prediction. Multilayer Perceptron (MLP),
which usually consists of three layers, is the most basic ar-
tificial neural network. If the output layer of MLP is linear
regression, it can make numerical prediction. However, since
the input of these methods must be fixed-length and they
don’t have sequential structure, these methods have diffi-
culty in capturing the sequential dependency of the variable-
length data.

Considering the limitation of the methods above, some
methods based on sequential structure are more suitable for
our task. Hidden Markov Model (HMM), which is known
for the application in speech recognition [28], is designed for
sequential prediction. However, this model can only predict
the result with the latest several inputs. Recurrent Neural
Network (RNN) is an effective approach to sequential pre-
diction. Unlike the feedforward neural network, RNN can
use their memory information to process sequences of inputs.
Now many studies leverage RNN to model the temporal de-
pendency within the data, and most of them get the state-of-
the-art results on many practical tasks. For example, RNN
language model [26] take full advantage of long-span sequen-
tial information to handle the massive language corpus, and
they achieve a better results than traditional neural net-
works language model. Moreover, RNN also brings much



improvement in speech recognition [20], and machine trans-
lation [1]. LSTM is a variation of RNN. It replaces the
activation function with the LSTM unit, which can process
time series with very long time lags of unknown size be-
tween important events. It outperforms traditional RNN in
numerous applications, such as handwriting recognition [14]
and speech recognition [15].

2.2 Machine Learning for Medical Data
In the recent works, various machine learning methods

are applied for the medical problems. Aleks et al. use dy-
namic Bayesian network to remove the data artifacts [11].
Somanchi et al. make early prediction of cardiac arrest
with SVM [32]. Recently neural networks have also been
employed in this field. Dabek et al. use artificial neural
network to predict psychological conditions such as anxiety,
behavioral disorders and depression [7]. Hammerla et al.
assess Parkinson’s disease with deep belief network based
on data collected in naturalistic settings [16]. Lipton et al.
use LSTM to diagnose with clinical medical data [21]. They
recognize patterns in variable-length time series of clinical
measurements to make the multilabel classification of diag-
noses.

Furthermore, some researchers have tried to take full ad-
vantage of BP measurement data. They employ the machine
learning and statistics methods to analyze this data on many
tasks, for instance, assessing the risk of stroke with logistic
regression model [9], predicting coronary heart disease with
cox proportional hazards regression model [34], etc. Re-
searchers also attempt to predict accurate BP value based
on decision tree [13] and neural network model [35]. Sideris
et al. predict BP with recurrent neural network using mea-
surement data from patients in ICU [30]. However, these
works are all based on office BP monitoring data, and none
of them jointly use the measurement data and contextual
data to make the prediction.

3. RECURRENT MODELS WITH CONTEX-
TUAL LAYER

In this section, we introduce our proposed recurrent mod-
els with contextual layer. Firstly we introduce the notations,
then present the proposed models thoroughly, and finally
demonstrate the process of training the models.

3.1 Problem Formation
The parameter t represents the time step in the sequence.

In our data set, at time t for each user the measurement
instance (e.g. BP and heart rate) is denoted by x(t) and
user’s contextual data (e.g. age, gender, BMI and altitude)
denoted by u(t). Given the measurement instances in time
order and user’s contextual data, we can train the models
to predict the user’s next BP measurement y. The overall
notations are shown in the Table 1.

3.2 Recurrent Neural Network (RNN)
Recurrent neural network (RNN) is a kind of artificial

neural network. Unlike feedforward neural network, its con-
nections between units form a directed cycle. Specifically,
RNN trains one input vector at a time. In time step t, the
hidden layer h1(t − 1) in time step t − 1 will be combined
with the input x(t), and then they jointly connect to the
hidden layer h1(t). The formulation of each hidden layer in

Table 1: Notations

Notation Explanation

t the step in the sequence
x(t), u(t) measurement data, contextual data
y(t), ŷ(t) real and predicted BP value
i(t),f(t),o(t) input, forget and output gate of LSTM unit
bi, bf , bo, bc in, b bias
σ the activation function sigmoid
c in(t) the input of LSTM cell
c(t) the current state of LSTM cell
h1(t), h2(t) the first and the second hidden layer
eo(t), eh the gradient of output layer and h2(t)
V(t), T(t), P(t) the weights of output layer, h2(t) and h1(t)
α the learning rate

RNN is:

h1(t) = tanh(Px(t) + Wh1(t− 1)), (1)

where P and W are the weights of the recurrent structure.
This recurrent structure enables RNN to use their internal
memory to process inputs with arbitrary lengths. However,
because of the vanishing gradient problem, the range of in-
put that can be in practice accessed by standard RNN is
quite limited.

3.3 Long Short-Term Memory (LSTM)
Unlike traditional RNN, Long Short-Term Memory (LSTM)

replaces the activation function of the neurons to a unit
with an ingenious inner structure called LSTM [17]. LSTM
doesn’t have the vanishing gradient problem, and can store
the memory of input thousands of discrete time steps before.
The LSTM unit in our paper uses memory cells with forget
gates [12]. The following equations represent the process of
parameter update.

i(t) = σ(Wxix(t) + Whih1(t− 1) + bi), (2)

f(t) = σ(Wxfx(t) + Whfh1(t− 1) + bf ), (3)

o(t) = σ(Wxox(t) + Whoh1(t− 1) + bo), (4)

c in(t) = tanh(Wxcx(t) + Whch1(t− 1) + bc in), (5)

c(t) = f(t) · c(t− 1) + i(t) · c in(t), (6)

h1(t) = o(t) · tanh(c(t)). (7)

In these equations, σ represents the sigmoid function. h1(t−
1) stands for the previous output of LSTM unit. We denote
the input, forget, output gates respectively as i, f , o, and
c in is the input of the LSTM cell. tanh is the activation
function of c in. The cell’s state transition is shown in the
Formula (6), and the current state is c(t) that is calculated
by the previous state c(t − 1) and the gates in the LSTM
unit. h1(t) in the Formula (7) is the output of LSTM unit
at the current time step t.

3.4 Recurrent Models with Contextual Layer
Our proposed recurrent models with contextual layer si-

multaneously utilize both the historical measurement data
and contextual data to make the prediction of users’ BP.
In traditional sequential prediction methods, all the inputs
are sequential and can be arranged in time order. However,
in our BP data set, the contextual data is mostly filled by



users themselves, and it will be constant since then. There-
fore, we view this data as a supplement to our results. We
add an extra layer to process the contextual data individu-
ally. The recurrent structure models the features of sequen-
tial data, and then the recurrent structure is combined with
contextual layer to form a joint representation. With this
representation, we can make the prediction of the future BP
value.
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Figure 2: Overview of our LSTM-CL model.

RNN/LSTM with Contextual Layer. As shown in
Figure 2, in our proposed model, we add an extra hidden
layer h2(t) after the general hidden layer h1(t) to process
the contextual data. This model is named LSTM with Con-
textual Layer (LSTM-CL). Contextual data are combined
with the output of hidden layer h1(t) collectively as input
connecting to the other hidden layer h2(t). In Figure 2, the
full line represents the process of feedforward, and the dotted
line stands for the backpropagation through time. RNN-CL
is similar to LSTM-CL, just replacing the LSTM unit with
the tanh function.

In LSTM-CL, we take features h1(t) extracted from the
historical measurement data by the first hidden layer and
contextual data u(t) together as the input of the next hidden
layer h2(t). The description of this process is

h2(t) = ReLU(h1(t)T + u(t)Q), (8)

where ReLU(x) = max(0, x) is the ReLU function that we
use for non-linear activation. We choose ReLU because if we
choose tanh or sigmoid, the vanishing gradient problem [19]
will stymie the gradient propagating from the second hidden
layer to the first hidden layer. h2(t) is the joint represen-
tation of contextual data and measurement data. Then we
apply linear regression to get the result of prediction ŷ(t).
ŷ(t) is calculated as

ŷ(t) = h2(t)V + b, (9)

where V is the parameters of linear regression and b is the
bias. Note that, we add L2 penalty of weights V to the

model in the practical experiments. In this way, the formulas
above will be modified slightly to avoid overfitting.

Loss function. In the last layer of our model, we choose
linear regression to accomplish numeric prediction. The loss
function we use is quadratic loss function, whose main idea
is to minimize the error between the target and the output
of the model.

loss(ŷ, y) =
1

2
(y(t)− ŷ(t))2 (10)

The 1/2 in the formula above is to simplify the process of
taking partial derivation of the loss.

3.5 Learning Algorithm
In this section, we introduce the learning process of our

proposed RNN-CL and LSTM-CL models with Back Prop-
agation Through Time (BPTT).

The main idea of BPTT is that the state of hidden layer
from previous time step is simply regarded as an additional
input. In this way, we can unfold the network to a deep
neural network, and then backpropagation can be applied
to train this model. Figure 2 shows the deep neural network
unfolded through time.

The learning process is shown as follows. First we need
to calculate the errors of the output layer. From the loss
function we proposed before, we can compute the errors of
the linear regression as

eo(t) = y(t)− ŷ(t), (11)

and eo(t) is what we need to propagate to other layers to
modify parameters. Then the weights V between the output
and the second hidden layer can be updated as

V(t+ 1) = V(t)− α · eo(t) · h2(t), (12)

where α in the formula above is the learning rate. Then
we can get errors propagated from the output layer to the
second hidden layer as

eh2(t) = eo(t)VT ∗

{
0 x < 0
~1 x > 0

, (13)

where * is the element-wise product, and ~1 is the vector that
all elements equal to one. After calculating the eh2(t), we
can easily modify the weights Q as

Q(t+ 1) = Q(t)− α · u(t)T · eh2(t) (14)

where u represents the contextual data. After computing
the weights Q, we can update weights T between the two
hidden layers. This process is similar to updating Q as

T(t+ 1) = T(t)− α · h2(t)T · eh2(t). (15)

Finally, we can get gradients of errors propagated from the
output layer to the first hidden layer as

eh1(t) = eh2(t)T(t), (16)

and the following process is same as traditional BPTT.

4. DATA

4.1 Data Description
As shown in Figure 1, our data is collected from the cloud

server of the wireless home BP monitors. The data is com-
posed of two parts: contextual data including users’ profile



Table 2: Data Description

Measurement Data Description

Systolic BP, diastolic BP Continuous Variable (in mm Hg)
Heart rate Continuous Variable (in bpm)
month of the measurement One-hot Vector
Whether taking drugs Binary Variable (Yes, No)

Contextual Data Description

BMI Continuous Variable (in kg/m2)
Gender Binary Variable (Male, Female)
Age Continuous Variable (in year)
Altitude Continuous Variable (in meter)
Longitude and Latitude Continuous Variable (in degree)

initialized by users when they register the accounts, and lo-
cations recorded by GPS; measurement data, including BP,
heart rate and so on, collected by the BP monitors. There
are 6 variables we can obtain in contextual data: BMI, gen-
der, age, altitude, longitude and latitude of a user u. Mea-
surement data consists of 5 variables: systolic BP, diastolic
BP, heart rate, time of the measurement, whether taking
drugs or not. We also add a feature about the interval be-
tween two measurements. Details of data is provided in
Table 2.

The basic statistics of our data are summarized as follows.
50.4% users are between 44 and 54 years old. 59.3% users
are male. As for the BP measurement, 52% users tend to
measure their BP from 6 a.m. to 8 a.m. and from 7 p.m.
to 10 p.m.. User’s condition on BP is divided into six cat-
egories, which is listed in Table 3. We find that the largest
proportion of users are in stage 1 hypertension. Patients
with stage 1 hypertension care most about their BP con-
dition. By predicting the trend of BP, we can help them
control their BP.

We also analyze the relationship between BMI and BP.
We divide users by their BMI, and then we calculate the
average BP in each group. The results are shown in Figure
3. From Figure 3 we can see, it is an obvious tendency that
BP rises with the increasing of BMI. As a result, BMI is an
important feature in predicting users’ BP.
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Figure 3: The relationship between BMI and BP.
From the figure we can see, BP values rise with the
increasing of BMI.

Table 3: Classification of blood pressure for adults

Category Systolic Diastolic Percentage
BP (mm Hg) BP (mm Hg) (%)

Perfect 90 - 119 60 - 79 20.7
Normal 120 - 129 80 - 84 18.1

High normal 130 - 139 85 - 89 19.8
Stage 1 hypertension 140 - 159 90 - 99 28.8
Stage 2 hypertension 160 - 179 100 - 109 9.6
Stage 3 hypertension > 180 > 110 3.0

4.2 Dealing with Missing data
In our task, when users register their accounts, they will

also fill their contextual data. However, some users are not
willing to share their personal information to the Internet,
so their contextual data is vacant. In statistics, imputation
is a common approach to deal with missing data. Imputa-
tion is that missing data is replaced with substituted values.
Once all missing values have been imputed, the dataset can
then be analyzed with standard methods for complete data.
Mean imputation, regression imputation and KNN imputa-
tion [2] are applied in our paper.

Mean imputation is that any missing value is replaced
with the mean of that features in all other cases. This is one
of the simplest imputation methods.

Regression imputation is that the missing value is pre-
dicted by a regression model. The regression model is em-
ployed to predict a feature based on other features. In our
paper, the input instance of the regression model is a nine-
dimensional vector m which consists of the systolic BP, dias-
tolic BP and heart rate in the last three months. We can get
the approximate contextual data û by the following formula:

û = Rm+ b, (17)

where R is the parameter to be learned by gradient descent
during the training process.

KNN imputation is the use of K Nearest Neighbor
(KNN) algorithm to estimate missing data. The main idea
of KNN is to find the k nearest samples in feature space.

The input instance of KNN imputation is the same as re-
gression imputation. We choose the k closest users who have
complete contextual data in the feature space as neighbors,
and then we fill the user’s contextual data with the most
common neighbor among them. The distance metric we use
is Euclidean distance, which can be computed as

dist(xi, yi) =

√√√√ n∑
i=1

(xi − yi)2, (18)

where xi, yi represent the features, and smaller distance
indicates higher similarity.

In experiments section, we will compare the performances
of these strategies in our data set.

5. EXPERIMENTS
In this section, first we introduce the settings of our exper-

iments, and then report the experiment results with further
analysis.

5.1 Data Preprocessing
To avoid some biases caused by irrelevant factors, it is

necessary to preprocess the data.



First, since BP value can be affected by numerous factors,
single measurement cannot represent the condition of one’s
BP. So we treat the average of the BP values of a month as
a measurement value of this user.

Second, we choose the users with long measuring time
spans. Since hypertension is a chronic disease, users always
measure their BP as a routine. With just several measure-
ments, the measurement data of the user may not reflect the
real pattern of his BP. In this paper, users who use the mon-
itor within a short time range will be neglected. We select
users who measure their BP for more than five months.

Third, values of all features should be normalized to the
same range. Normalization is a fundamental job in data
processing. After adjusting values on different scales to a
notionally common scale, the effect of the magnitude of nu-
merical values in different features would be eliminated, only
leaving the fluctuation trends of these features. Min-Max or
Z-score normalization are commonly used. In this paper, we
adopt Min-Max to rescale the data by using the following
formula:

V aluenew =
V alueorigin − V aluemin

V aluemax − V aluemin
. (19)

Finally, because some users don’t measure their BP every
month, we use the twelve-dimensional one-hot vectors to
represent the respective month in a year. The interval be-
tween this observation and the previous observation is also
an effective feature. Furthermore, we transform the height
and weight information of the user to a general index named
Body Mass Index (BMI), which can reflect the level of obe-
sity of the user. Some medical studies [5] show that obesity
plays an important role in affecting people’s BP.

5.2 Experiment Settings
The measuring time of our data ranges from January 1st

in 2015 to July 31st in 2016. We set the BP of last month in
the data set as the target. The data before the target month
is the training set. The training process is that we predict
the BP of last month in training set with the data before
this month, which is to modify the parameters of the models.
The whole data set is the testing set. The testing process
is that we predict the target with the data before target
month, which is to test the performance of the models.

We select the users whose measuring time spans are more
than five months. The number of these users is 12671, but
only 5894 of them have complete users’ contextual data. In
order to confirm the validity of contextual data and compare
different strategies of filling up the missing data, we divide
the whole data into two data sets:

• dataset 1 All 5894 users in this data set have complete
contextual data. We conduct our experiments on this
data set to compare our model with other models.

• dataset 2 Measuring time spans of 12671 users in this
data set are more than five months. Part of these
users have approximate contextual data. We compare
different strategies of filling up the missing data based
on this data set. (See Sec 5.5.2)

Because the RNN-CL and LSTM-CL models are proposed
for sequential BP prediction, we can also use our models to
predict the users’ BP value in the second or third month
after the last month in training set. To test its feasibility,

we try to expand the interval between the target month and
training months by dropping the last one or two months in
training data. In this way, we can get three data sets. The
description of these three data sets are as follows:

• The next month The target month is the next month
after the last month in training set.

• The second month By dropping the last month in
training set, the target month is the second month
after the new training set.

• the third month By dropping the last one and two
months in training set, the target month is the third
month after the new training set.

5.3 Compared Methods
We compare our RNN-CL and LSTM-CL with six compar-
ative methods of different categories.

• SVR is a classic regression model based on SVM. We
use LibSVM1 to implement the method.

• GBRT is a boosted method whose base learners are
decision trees. We use the GradientBoostingRegressor
API in the scikit-learn2.

• FM is also a regression model based on matrix factor-
ization. We implement it with LibFM3.

• MLP is a basic neural network containing one hidden
layer, and the output layer is linear regression model.

• RNN is an improvement of ANN, whose hidden layer
can directly become the input of the next time step.
The inputs of the models above can only be fixed length,
but RNN and the following model, LSTM, can use
variable-length inputs.

• LSTM replaces the activation function to an LSTM
unit, and this unit can better record the historical
memory than RNN. The implementation of this model
is based on Tensorflow4.

5.4 Evaluation Metrics
To measure the performance of these methods in predicting
the BP value, we choose the most popular metrics, Root
Mean Square Error (RMSE) and Mean Average Precision
(MAE):

RMSE =

√√√√ ∑
i∈Ωtest

(ri − r̂i)2

ntest
, (20)

MAE =

∑
i∈Ωtest

|ri − r̂i|

ntest
, (21)

where Ωtest is the denotation of the testing set and ntest is
the denotation of the total number of the users in the testing
set. In these two metrics, the smaller value represents the
better performance.

1http://https://www.csie.ntu.edu.tw/ cjlin/libsvm/
2http://scikit-learn.org
3http://www.libfm.org/
4https://www.tensorflow.org



Table 4: Experiments on diastolic BP and systolic BP and further prediction of the second and third month
after the training months, measured by MAE and RMSE. Dataset 1 has complete contextual data and dataset
2 contains some users with approximate contextual data filled by KNN.

Data Model
Diastolic Blood Pressure Systolic Blood Pressure

The next month The second month The third month The next month The second month The third month

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

1

GBRT 3.4831 4.5676 4.1234 5.3826 4.4898 5.8153 5.6916 7.5010 6.7265 8.7802 7.2860 9.4772
FM 3.4859 4.5877 4.1252 5.3977 4.5192 5.8523 5.6333 7.4431 6.6911 8.7386 7.3120 9.4939
SVR 3.4034 4.5064 4.1098 5.3888 4.4891 5.8232 5.5728 7.3976 6.6929 8.7716 7.3236 9.5344
MLP 3.4267 4.5193 4.1031 5.3662 4.4785 5.8082 5.6125 7.4097 6.6657 8.7089 7.2948 9.4782
RNN 3.3691 4.4735 4.0185 5.3050 4.3326 5.6553 5.4246 7.2277 6.4762 8.5100 7.0837 9.2359
RNN-CL 3.3374 4.4306 3.9910 5.2669 4.3177 5.6307 5.3981 7.1931 6.4470 8.4755 7.0597 9.2252
LSTM 3.2917 4.3475 3.9123 5.1305 4.2761 5.5678 5.3672 7.0987 6.3233 8.2793 6.9715 9.0800
LSTM-CL 3.2558 4.2963 3.8553 5.0753 4.2420 5.5187 5.2906 7.0157 6.2991 8.2654 6.9243 9.0319

2

GBRT 3.4608 4.5482 4.1166 5.3808 4.4765 5.7937 5.6359 7.4458 6.6729 8.7257 7.2628 9.4375
FM 3.4141 4.5140 4.0950 5.3631 4.4710 5.7936 5.5895 7.4009 6.6668 8.7233 7.2817 9.4553
SVR 3.4039 4.5115 4.0994 5.3768 4.4782 5.8075 5.5562 7.3876 6.6763 8.7548 7.3045 9.5034
MLP 3.4172 4.5174 4.0943 5.3574 4.4766 5.7989 5.5993 7.4039 6.6552 8.7043 7.2830 9.4513
RNN 3.3611 4.4613 4.0136 5.2824 4.3032 5.6123 5.4213 7.2140 6.4602 8.4906 7.0609 9.2284
RNN-CL 3.3424 4.4339 3.9826 5.2559 4.2983 5.6097 5.4005 7.1905 6.4570 8.4889 7.0584 9.2266
LSTM 3.2639 4.3168 3.9091 5.1271 4.2503 5.5431 5.3098 7.0308 6.3164 8.2544 6.9415 9.0579
LSTM-CL 3.2291 4.2681 3.8505 5.0718 4.2436 5.5358 5.2725 6.9668 6.2514 8.1900 6.9204 9.0435

5.5 Analysis of Results

5.5.1 Comparison of Prediction Performance
Table 4 illustrates the performance on dataset 1 and dataset

2 with MAE and RMSE. We make predictions of diastolic
BP and systolic BP respectively. In order to better display
our model’s effectiveness, we do experiments on datasets the
next month, the second month and the third month
respectively.

According to the results in Table 4, we get the following
conclusions:

First, sequential prediction models outperform all the non-
sequential models. For example, on dataset 1, LSTM im-
proves the MAE of predicting diastolic BP in the next month
by 6.53%, 6.60%, 4.34% and 4.99% compared to GBRT, FM,
SVR and MLP. For RMSE, the improvements are 5.94%,
6.35%, 4.66% and 4.93%. The similar results have been
shown in other experiment settings. From that we can draw
the conclusion that sequential information is effective in the
prediction of BP values.

Second, our proposed LSTM-CL achieves the best perfor-
mance on all settings. RNN-CL also outperforms RNN on
all settings. To demonstrate the effectiveness of using con-
textual layer, we compare RNN with RNN-CL, and LSTM
with LSTM-CL. Taking the results of predicting diastolic BP
in the next month on dataset 2 for example, LSTM-CL im-
proves the MAE and RMSE by 1.06% and 1.13% compared
to LSTM, and the improvements of RNN-CL are 0.556%
and 0.614% compared to RNN. From all above we can see,
contextual layer is able to improve the accuracy of the BP
prediction.

Third, when we consider the situation of making further
prediction, we can see that the performances of sequen-
tial prediction models are still far exceed the non-sequential
models, and LSTM-CL still obtains the best performance.
It shows that the accuracy of our proposed model can be
stably better than other methods over different experiment
settings.

Finally, systolic BP and diastolic BP predictions have the
same increasing trend on each dataset. Besides, MAE and

RMSE of systolic BP prediction are all always much larger
than the corresponding values of diastolic BP prediction,
which means that it is more difficult and challenging to pre-
dict accurate systolic BP.

Table 5: Performance comparison on different im-
putation strategies, measured by MAE and RMSE.
The same setting in data set 1 is the baseline.

Strategies
Diastolic BP Systolic BP

MAE RMSE MAE RMSE

Baseline 3.2558 4.2963 5.2906 7.0157
Mean 3.2509 4.2914 5.2883 7.0089

Regression 3.2632 4.3023 5.3044 7.0251
KNN 3.2291 4.2681 5.2725 6.9668

5.5.2 Comparison of Imputation Strategies
In this section, we investigate three imputation strategies

of filling up the missing data and compare their performance.
We use dataset 2 predicting the next month in the experi-
ments. The baseline is the dataset 1 in the same experiment
setting.

According to the results in Table 5, we get the following
conclusions:

KNN imputation achieves the best result. It improves the
MAE and RMSE of baseline by 0.820% and 0.656%. Mean
imputation outperforms the baseline by 0.151% and 0.114%.
However, the results of regression imputation are worse than
baseline. We infer that regression model is overfitting dur-
ing the training process. This phenomenon may be another
source of bias. These results demonstrate that KNN is the
best method to fill up the missing data.

Moreover, the trends in diastolic BP and systolic BP are
similar, so these strategies can be applied in both diastolic
BP data and systolic BP data.

5.5.3 Dimensionality Analysis
Dimensionality analysis is shown in Figure 4. We compare

the performance with different dimensionalities (3, 5, 10, 20,
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Figure 4: Performance comparison of six models
with different dimensionalities.

30, 40 and 50). We compare six comparative models with
varying dimensionalities. From Figure 4 we can see, LSTM-
CL achieves the best results in any dimensionality. Different
methods have similar trend on MAE and RMSE. MLP is
much stable with the poorest performance.

Moreover, the best results of RNN and RNN-CL are on
d = 10; LSTM and LSTM-CL are on d = 5. We infer
that these models can hardly learn the parameters well when
the dimensionality is big and the collecting data is not very
large. Both LSTM and LSTM-CL are overfitting if the di-
mensionality becomes too large. Since the LSTM contains
more parameters than RNN, the dimensionality of LSTM
should be smaller than RNN.

6. CONCLUSION
In this paper, we propose the recurrent models with con-

textual layer to predict users’ BP values. It extracts features
from sequential measurement data and contextual data re-
spectively by using the hidden layers of recurrent structure
and add a contextual layer. Then this two kinds of data can
be jointly processed to make the prediction. Given the con-
dition that a part of users’ contextual data is vacant, we use
three strategies to fill up the missing data. In experiments,
the results show that our models lead to great improvement
over the existing models. Moreover, the experiments prove

that KNN is the most suitable approach to fill up the missing
contextual data.

In the future, we will further investigate the following di-
rections. First, we can extend our model to deal with other
medical problems. RNN-CL and LSTM-CL can also be uni-
versal models to deal with similar problems like predicting
blood sugar and estimating the risk of stroke. Second, we
need to find a method to jointly use the home BP monitor-
ing data and office BP monitoring data. However, these two
kinds of data have different features. So how to combine
these features is the main challenge.
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