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Background



Why dynamic recommender system?

1. User’s interests dynamically shift and evolve over time.
2. Item’s popularity also changes over time.
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What is dynamic recommender system?

• Dynamic recommender systems consider the changes of users and items over time.

• For example, RNN-based models use item sequences as inputs to capture sequential
dependency.

Problem:
1. Ignore user sequences
2. lack collaborative information!

Session-based	recommendations	with	Recurrent	Neural	Networks,	ICLR	2016



Why graph?

• Graph Neural Networks have been proven to be useful in recommender systems.

• Graph structures can incorporate collaborative information explicitly.

• Graph structures can explore high-order connectivity between users and items.
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How to use graph in dynamic recommender system?

• Dynamic graph is to model the changes of nodes when the graph is evolving.

• When a new interaction join the graph, we need to update the embeddings of users
and items.
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Model



How to use graph in dynamic recommender system?

• Zero-order ‘inheritance’ is to inherit the node embedding from the last state.
• First-order ‘propagation’ is to propagate user/item embedding to the other side.
• Second-order ‘aggregation’ is to model the collaborative relation between users and

items by aggregating second-order neighbors.

Dynamic Graph Collaborative Filtering (DGCF)
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DGCF

• Zero-order relation inherits the user/item embedding from the previous states and
time interval.



DGCF

• First-order relation propagates the user/item embedding to the other side.



DGCF

• Second-order relation aggregate the neighbors of each side and input them to the
other side.

• Node u serves as a bridge passing information from {v1, v2} to node v so that v
receives the aggregated second-order information through u.



DGCF
• Three aggregation functions are tried in our model:

………………………………………………………………………………..
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Mean	aggregator

LSTM aggregator

Graph	attention	aggregator

• The number of second-order neighbors for some node can be very large, so we select a fixed
number of neighbors for aggregation.



DGCF

• In the end, we fuse the three relations and get the final user/item embedding.



Evolutionary loss

• Motivated by Jodie [1], we use the evolutionary loss to predict the item v that the
user u is most likely to interact with at time t.

• Given a future time point, we can leverage our model to predict the future
embeddings and then make recommendation.

[1] Predicting	Dynamic	Embedding	Trajectory	in Temporal	Interaction	Networks, KDD 2019



Evolutionary loss

User future embedding:
Item future embedding:

• Loss function



Experiments



Datasets

Three datasets are used to evaluate our model, which have different action repetition
rate.



Performance

• We compared our model with 6 state-of-the-art baseline models.
• Our model performs best on LastFM datasets, which has lowest action repetition.

All data and codes available in https://github.com/CRIPAC-DIG/DGCF	



Aggregation function

• Three aggregation functions are tried in DGCF
• Graph attention achieves best performance among them.



Aggregation size

• Generally, a smaller aggregation size can have a better performance, so we tend to
choose 20 as the aggregation size.



Conclusion



Future directions

• We design a model based on dynamic graph to learn collaborative information
explicitly in dynamic recommender system.

• In the future, we will also try to extend our model to more complicated graphs, such
as knowledge graph, social network, and attributed graph.

[1] Predicting	Dynamic	Embedding	Trajectory	in Temporal	Interaction	Networks, KDD 2019



Thank you!
Q&A


