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Abstract—Dynamic recommendation is essential for modern
recommender systems to provide real-time predictions based
on sequential data. In real-world scenarios, the popularity of
items and interests of users change over time. Based on this
assumption, many previous works focus on interaction sequences
and learn evolutionary embeddings of users and items. However,
we argue that sequence-based models are not able to capture
collaborative information among users and items directly. Here
we propose Dynamic Graph Collaborative Filtering (DGCF),
a novel framework leveraging dynamic graphs to capture col-
laborative and sequential relations of both items and users at
the same time. We propose three update mechanisms: zero-
order ‘inheritance’, first-order ‘propagation’, and second-order
‘aggregation’, to represent the impact on a user or item when
a new interaction occurs. Based on them, we update related
user and item embeddings simultaneously when interactions
occur in turn, and then use the latest embeddings to make
recommendations. Extensive experiments conducted on three
public datasets show that DGCF significantly outperforms the
state-of-the-art dynamic recommendation methods up to 30%.
Our approach achieves higher performance when the dataset
contains less action repetition, indicating the effectiveness of
integrating dynamic collaborative information.

Index Terms—recommender system, dynamic graph

I. INTRODUCTION

Dynamic recommender systems have proved their effec-
tiveness in many online applications, such as social media,
online shopping, and streaming media. They leverage histor-
ical interaction sequences of users and items to predict the
item that the user may interact with in the future. In real-
world scenarios, both user interest and item popularity may
shift and evolve along with time. Therefore, it is crucial for
a dynamic recommendation model to accurately capture the
dynamic changes in user and item perspectives to make accu-
rate predictions. Besides, collaborative information is proved
powerful in making recommendation [1]–[3]. Users that share
common interacted items tend to have similar interests, and the
methods that leverage this property to recommender system is
what we call Collaborative Filtering (CF). Consequently, com-
bining dynamic changes of users and items with collaborative
information is one of the main tasks in dynamic recommender
systems.
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Fig. 1. User-Item graph. Red nodes denote users, and green nodes denote
items. A solid line means the user has interacted with the item, a dash
line means the user and the item are interacting. Arrows in different colors
represent different relations when updating the embedding of a node.

To build a dynamic recommender system, an intuitive way
is to model sequences of interactions. Previously, many kinds
of sequence-based methods have been developed based on
user-item interactions. For example, RNN-based sequential
prediction models [4]–[7] use the recurrent architecture to
capture the long-term dependency of the item sequences.
Besides, to take user sequences into consideration as well,
Jodie [8] and other dynamic evolution models [9]–[11] use
double RNNs to simultaneously model the update of users
and items based on the evolutionary processes of them. We
argue that all the models above fail to utilize collaborative
information directly. These sequence-based methods primarily
model the transition relations between items but ignoring the
similarity between users. To mitigate the problem of lacking
collaborative information, the graph structure is an alternative
instrument for dynamic recommender systems.

Several previous works have shown the advantage of using
the graph structure in recommender systems, but they all
have restrictions in different aspects. According to [12], [13],
the graph structure is capable of incorporating collaborative
information explicitly. By taking user-item interactions as a bi-
partite graph, these models exploit the high-order connectivity
of users and items and encode collaborative information into
the graph structure. However, all these models are only suitable
for static scenarios. The advantages of sequential dependency
and time information are wasted in them. Moreover, SR-GNN
[14] proves the superiority of graph structures over sequences
in the dynamic recommendation, but it fails to incorporate the
evolving of items. To deal with these problems, we leverage



dynamic graphs to model the evolutionary process of dynamic
recommender systems.

In our proposed dynamic graph, nodes are users and items,
and edges are their interactions. In the beginning, the graph
only contains isolated user and item nodes. With more users,
items and their interactions join the dataset, the nodes and
edges evolve and grow to a large graph. To model this process
and learn the embeddings of users and items at different
times, we develop three update mechanisms in the dynamic
graph, which are shown in Figure 1. The first one is zero-
order inheritance, in which each node inherits its previous
embedding and incorporates the new features of it to update
its embedding. Secondly, first-order propagation builds the
connection between two sides of the interaction by propagating
one’s embedding to the other. It updates the embeddings of
the user and item in the interaction simultaneously. Finally,
second-order aggregation leverages aggregator functions to
obtain an overall embedding for all neighbors of the node in
the user side, and then pass the embedding to the node in
the item side. It is a direct manner to utilize collaborative
information.

Based on these three update mechanisms mentioned above,
we propose Dynamic Graph Collaborative Filtering (DGCF)
to employ all of them under a unified framework. Figure
2 illustrates the workflow of the DGCF model. There are
three modules in the model, corresponding to the three update
mechanisms. Each part produces an embedding, and then the
embeddings generated by the three parts are fused to learn
the embedding of the node. At the end of our model, we
utilize an evolutionary loss to take the time information, i.e.,
time stamps, into our model to make recommendation. Details
of the model will be introduced in section II. Overall, our
proposed DGCF is capable of directly learning user and item
embeddings and perform recommendation tasks in an end-to-
end framework.

To summarize, our main contributions are listed as follows:

• To the best of our knowledge, our work is the first one
to introduce the dynamic graph into dynamic recommen-
dation scenarios to model the interactions and updates
between users and items.

• We design a novel framework for the dynamic recommen-
dation task with graph structure, which can effectively
model the dynamic relationship between users and items.

• We conduct empirical experiments on three public
datasets. Experimental results demonstrate that our DGCF
model achieves state-of-the-art results on these datasets,
especially for datasets with lower action repetition.

II. PROPOSED MODEL

In this section, we present the proposed Dynamic Graph
Collaborative Filtering (DGCF) in detail. We first formulate
the dynamic graph recommendation problem. Then we intro-
duce the embedding update and recommendation modules of
the DGCF. Finally, we illustrate the process of optimization
and training.

TABLE I
NOTATIONS

Notation Explanation

t−, t, t+ Time points of previous, current,
and future interaction

Gt = (Vt, Et) Dynamic graph at time t
Si = (ui, vi, ti, fi) i-th interaction
u, v User u and item v
ht
u,h

t
v The embedding of user and item at time t

θ, φ, ζ Zero, first, and second-order functions
W Weight matrix
Hu

v = {v1, v2, ..., vm} Second-order neighbors of item v
Hv

u = {u1, u2, ..., un} Second-order neighbors of user u
F(·) Fusion function
MLP Multi-Layer Perceptron
f feature vector

A. Preliminary

1) Dynamic recommendation: Let U , V represent the user
and item sets, respectively. In a dynamic recommendation
scenario, the i-th user-item interaction is represented in a tuple
Si = (ui, vi, ti, fi), where i ∈ {1, 2, · · · , I}, and I is the total
number of interactions. ui ∈ U , vi ∈ V are the user and
item in the interaction and ti is the time stamp. fi denotes
features of the interaction, and it includes user features fu and
item features fv . The target of dynamic recommendation is
to learn the representations of the user and item from current
interaction and historical records, and then predict the most
possible item that the user will interact with in the future.

2) Dynamic graph: The interactions between users and
items at time stamp t construct a dynamic graph Gt = (Vt, Et),
where Vt, Et are the sets of nodes and edges in Gt respectively.
Under recommendation settings, Vt contains all user and item
nodes, and Et is the set of all interactions between users and
items before time t. Essentially, the graph here is a bipartite
graph, and all edges are between user and item nodes. We use
ht
u ∈ Rd and ht

v ∈ Rd to represent the embedding of user node
u and item node v at time t. The initial graph Gt0 = (Vt0 , Et0)
at time t0 consists of isolated nodes or a snapshot of the
dynamic graph, and the initial embeddings of users and items
are initial feature vectors or random vectors. Then, while
another interaction S = (u, v, t, f) joins the graph, user and
item embeddings ht

u, ht
v are updated by our proposed DGCF.

Besides, ht−
u and ht−

v represent the most recent embeddings
of user node u and item node v before time stamp t. The
notations used throughout this paper are summarized in Table
I.

B. Overview

Figure 2 is an overview of our proposed framework. The
interactions between users and items form a dynamic graph
over time. When a new user-item interaction joins, we utilize
the embedding update mechanism (Section II-C) to update
both user and item nodes together. Then, we get the user and
item embeddings in the future via the projection functions
(Section II-D). Finally, we calculate the L2 distance between
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Fig. 2. Illustration of the Dynamic Graph Collaborative Filtering (DGCF). Left: A new interaction joins in the user-item graph. Right: Overall structure of
DGCF. The pink and light green nodes means the neighbors of the target nodes. ht−

u and ht−
v denote the embedding of user u and item v before time

t. Based on three update mechanisms, ht
u, ht

v are produced by our DGCF at the same time. With ht
u, ht

v , and evolutionary loss function, we can get the
recommendation in the end.

the predicted item embedding and all other item embeddings,
and then recommend items with the smallest distance to the
predicted item embedding.

C. Embedding Update

First, we discuss the embedding update mechanisms: (1)
zero-order ‘inheritance’, which means users and items take
the input of their previous embeddings and new features,
(2) first-order ‘propagation’, which models current user-item
iteration, and (3) second-order ‘aggregation’, which aggregates
the previous users that have interacted with the item into the
current user, and vice versa.

1) Zero-order ‘inheritance’: For a dynamic graph, the node
to be updated firstly inherits the influence of the previous state
and new features of itself. Similar to existing sequential pre-
diction methods [4], [5], [8], we use the previous embedding
as a part of the input to ‘inherit’ the previous state. Besides,
we additionally encode the time interval between current and
previous embeddings as a part of the features to learn the
user and item embeddings. For user embedding hu and item
embedding hv , the forward formulas are

ĥt
u = θu(Wu

0ht−

u + w0∆tu + Wf
0 fu), (1)

ĥt
v = θv(Wv

0ht−

v + w0∆tv + Wf
0 fv), (2)

where ∆t is the time interval between current time t and
previous interaction time t−, and ht−

u ,ht−

v are the most recent
embeddings of user u and item v before t. fu and fv are the
features of the user and the item respectively. W0 ∈ Rd×d are
parameter matrices and w0 ∈ Rd is the parameter vector to
encode time interval ∆t. θu and θv are activation functions.
To improve the computational speed, our work here uses an
identity map instead of a non-linear activation function.

2) First-order ‘propagation’: In our model, we build a
dynamic bipartite graph to model the interactions between
user and item nodes, which means a user node’s first-order
neighbors are the items that he or she has interacted with, and
vice versa.

In dynamic recommendation scenarios, the item that a user
interacts with, to some extent, reflects his or her recent inten-
tion and interest. Correspondingly, users who are interested
in a specific item can be regarded as a part of the item’s
properties. Therefore, it is essential to exploit the first-order
neighbor information to learn user and item embeddings. Note
that our model only incorporates the current interacted node as
the input instead of taking all first-order neighbors as inputs.
To be specific, when an interaction involving user u and
item v occurs, on the one hand, item v’s current embedding
and features like reviews or descriptions are incorporated into
user u’s embedding. On the other hand, the user u’s current
embedding and features, e.g., the user’s profile, are injected
into item v’s embedding. Formally,

h̄t
u = φu(Wu

1ht−

v + Wf
1 fv), (3)

h̄t
v = φv(Wv

1ht−

u + Wf
1 fu), (4)

where W1 ∈ Rd×d are parameter matrices. In this way, the
features of the current interaction are propagated to update
user and item embeddings. Similar to zero-order inheritance,
we still use identity map function for φu and φv .

3) Second-order ‘aggregation’: In the spirit of modeling
collaborative filtering in a dynamic graph, the update between
nodes considers not only the historical sequence of the node
and the information between interacted nodes, but also the
structural information among the nodes. The rationale be-
hind second-order aggregation is to model the collaborative
relationship between users and items. In a dynamic graph, it



captures the influence of the nodes at second-order proximity
passing through the other node participating in the interaction.

Specifically, for a user, he or she may have bought a bunch
of items before the current interaction, and now this user buys
a new item, so we assume the newly purchased item has a
collaborative relation with the previously purchased items of
the user. To model this relation, we build a direct connection,
which denoted as vu → u→ v. Here vu ∈ Hu

v , where Hu
v =

{v1, v2, ..., vm} is the set of previously purchased items of
user u, and v is the item in current interaction. Node u serves
as a bridge passing information from vu to node v so that v
receives the aggregated second-order information through u.
For the user u, the relation is uv → v → u, where uv ∈
Hv

u, Hv
u = {u1, u2, ..., un} is the set of users who previously

purchased item v.
As shown in Figure 2, to make the second-order information

flow from the neighbors of v to u, we take u as the anchor node
and ui ∈ Hv

u as second-order neighbor nodes in the graph.
Then we use aggregator functions to transmit neighborhood
information to the anchor node. This process is formulated as

h̃t
u = ζu(ht−

u ,ht−

u1
,ht−

u2
, ...,ht−

un
), (5)

h̃t
v = ζv(ht−

v ,ht−

v1 ,h
t−

v2
, ...,ht−

vm), (6)

where ζu and ζv are aggregator functions. In the dynamic
graph, users and items are two different kinds of nodes with
different properties. For example, the neighbors of a user
are the items that he or she has interacted with, which are
time-dependent. The neighbors of an item are the users who
have interacted with it, which tend to be similar. Besides, the
number of users that have interacted with a popular item could
be significantly large-scale. Thus, the aggregator functions we
use also should be different for user and item nodes. The
following part provides some candidate aggregator functions
we can use in second-order update:

• Mean aggregator is a straightforward operator to aggregate
the neighbor information of user u and item v. According
to [15], Mean aggregator can be viewed as an inductive
variant of the GCN [16] approach. So, the formulas of the
aggregator can be written as follows:

h̃t
u = ht−

u +
1

|Hu
v |

∑
ui∈Hv

u

Wm
u ht−

ui
, (7)

h̃t
v = ht−

v +
1

|Hv
u|

∑
vi∈Hu

v

Wm
v ht−

vi , (8)

where Wm
· ∈ Rd×d are aggregation parameters.

• LSTM aggregator is a complex aggregator function based
on LSTM [17] architecture. By taking sequential data as
inputs, LSTM has strong non-linear memory expression
capability to keep track of long term memory. From user’s
perspective, previous items that users have interacted have
explicit sequential dependency, so we feed all of the user
node’s neighbors into the aggregator function in a chrono-
logical order. Besides, from the item’s perspective, we order

its connected users by time and input them to LSTM. The
LSTM aggregator can be formulated as:

h̃t
u = ht−

u + LSTMu(ht−

u1
,ht−

u2
, ...,ht−

un
), (9)

h̃t
v = ht−

v + LSTMv(ht−

v1 ,h
t−

v2 , ...,h
t−

vm). (10)

• Graph Attention aggregator can compute attention
weights between the central node and the neighbor nodes,
which indicate the importance of each neighbor node to the
central node. Inspired by the GAT [18] model, we define
graph attention aggregator as:

h̃t
u =

∑
ui∈Hv

u

αuih
t−

ui
, (11)

αui =
exp(LeakyRelu(Ww[ht−

u ‖ ht−

ui
]))∑

ui∈Hv
u

exp(LeakyRelu(Ww[ht−u ‖ ht−
ui

]))
, (12)

h̃t
v =

∑
ui∈Hu

v

αvih
t−

vi , (13)

αvi =
exp(LeakyRelu(Ww[ht−

v ‖ ht−

vi ]))∑
vi∈Hu

v
exp(LeakyRelu(Ww[ht−

v ‖ ht−
vi ]))

, (14)

where Ww ∈ R2d is a weight matrix, and ‖ is the
concatenation operation.

In practical recommendation scenarios, second-order ag-
gregation may face enormous computational costs due to
the large scale of data. Therefore, when performing second-
order aggregation, we select a fixed number of neighbors for
aggregation. We call the number of neighbor nodes selected
as aggregator size.

For higher-order information, we choose not to use it
because of the following reasons. Firstly, higher-order in-
formation may lead to over-smoothing problem [19], which
makes the node embeddings prone to be similar. Besides,
using higher-order information increases the computational
complexity in power law. As efficiency is a vital issue in
recommender system, we try to control the computational
complexity to be acceptable in most scenarios and only use
up to second-order information.

4) Fusion information: To combine the three kinds of up-
date mechanisms in learning node embeddings in the dynamic
graph, we fuse the above mentioned three representations to
obtain the final update formula:

ht
u = Fu(Wzero

u ĥt
u + Wfirst

u h̄t
u + Wsecond

u h̃t
u), (15)

ht
v = Fv(Wzero

v ĥt
v + Wfirst

v h̄t
v + Wsecond

v h̃t
v), (16)

where ht
u,h

t
v ∈ Rd are the node embeddings updated after

the user u interact with item v at time t. Fu,Fu are fusion
functions of user and item respectively. Here we generally
choose sigmod σ(·) as activation function. Wzero, Wfirst,
and Wsecond ∈ Rd×d are parameters to control the influence
of three update mechanisms.



D. Recommendation

In dynamic recommendation, the goal is to predict the
item that the user is most likely to interact with at time t
according to his or her historical interaction sequence before
time t. Intuitively, this is an analogy to link prediction tasks
in dynamic graphs. To be specific, our target is to predict the
item node v in the dynamic graph that the user node u is
most likely to link to at time t. Based on [8], we propose an
evolutionary loss for dynamic graph.

1) Evolution formula: Different from traditional collabora-
tive filtering methods, our model is designed for predicting
future interaction. Specifically, given a future time point, we
can leverage our model to predict the future embeddings
and then make recommendation. It is a more flexible setting,
because the predicted results do not rely on the sequences.
Instead, they are based on the embeddings learned by the
dynamic graph structure.

Since ht
u means the predicted embedding of the user’s

future, we need an estimated future embeddings to measure
whether the predicted embedding is accurate. Motivated by
[8], we assume the growth of users is smooth, so the embed-
ding vector of the user node evolves in a contiguous space.
Therefore, we set a projection function to estimate the future
embedding based on element-wise product of the previous em-
bedding and time interval. We define the embedding projection
formula of user u after current time t to the future time t+ as
follows:

ĥt+

u = MLPu(ht
u � (1 + wt(t

+ − t)), (17)

where wt ∈ Rd is time-context parameter to convert the time
interval to vector, 1 ∈ Rd is a vector with all elements 1.
MLP here means Multi-Layer Perceptron. t+ is the future
time that the user interacts with the next item. With this
projection function, the future item embedding grows in a
smooth trajectory w.r.t. the time interval.

After obtaining the projected embedding ĥt+

u of the user
u, we learn the future embedding of the item v denoted as
ĥt+

v by setting another projection function. The projected item
embedding is based on three parts: the user that currently
interacts with, the update features of the user and the item
itself, which are all we have already known. So, we define the
projection formula of item v as:

ĥt+

v = MLPv(W2ĥ
t+

u + W3fu + W4fv)), (18)

where W2,W3 and W4 denote the weight matrix.
2) Loss function: When we have the estimated future

embeddings by projection functions, we take them as ground
truth embeddings in our loss function. In order to train
our model, the loss function is composed of Mean Square
Error (MSE) between model-generated embeddings ht

v , ht
u

and estimated ground truth embeddings ĥt+

v , ĥt+

u at each
interaction time t. Besides, we need another constraint for the
item embedding to avoid overfitting. We constrain the distance
between model-generated ht

v and mostly recently embedding
ht−

v of item v, and between ht
u and ht−

u , respectively, to make

the node embedding more consistent with the previous one.
The assumption behind this constraint is that items’ and users’
properties tend to be stable in a short time. The loss function
is written as follows:

L =
∑

(u,v,t,f)∈{Si}Ii=0

‖ĥt+

v − ht
v‖2 + λu‖ht

u − ht−

u ‖2+

αv‖ht
v − ht−

v ‖2,
(19)

where {St}Ii=0 denotes the interaction events sorted by
chronological order, and λu and αv are smooth coefficients,
which are used to prevent the embedding of user and item
from deviating too much during the update process.

To make recommendations for a user, we calculated the L2
distances between the predicted item embedding that we obtain
from the loss function and all other item embeddings. Then
the nearest Top-k items are what we predict for the user.

Compared with traditional BPR loss [3], the evolutionary
loss is more suitable for dynamic recommendation, because it
takes time into account. As a result, the changing trajectories
for users and items are modeled by this loss [8], and it can
make more precise recommendation for the next item.

E. Optimization and Training

Similar with Recurrent Neural Networks (RNNs), we ap-
ply the back-propagation through time (BPTT) algorithm for
model training. The model parameters are optimized by Adam
optimizer [20].

To speed up the training process, we use the same method
of constructing batches as [8]. As mentioned in [8], the
training algorithm needs to follow two critical criteria: (1) it
should process the interactions in each batch simultaneously,
and (2) the batching process should maintain the original
temporal ordering of the interactions and keep the sequential
dependency in the generated embeddings. In practice, we
arrange the interaction events Si in chronological order to
get an event sequence {S1, S2, · · · , SI} numbered by integer,
and I is the total number of interactions. We traverse through
the temporally sorted sequence of interactions iteratively and
put each interaction to a Batchk, where k ∈ [1, I]. In the
initial stage of constructing the Batch sequence: each Batch
set is empty at first, and the Batch index is −1. We define
as Binit(u) = −1, Binit(v) = −1. After each interaction
(u, v, t, fr) is added to Batch, we update the batch index
of the user u and item v. For each interaction, the index of
the added Batch is max{B(u) + 1, B(v) + 1)}. When the
interaction is added to the Batch, we update the index of the
added u and v. This mechanism ensures that the embeddings of
users and items in the same Batch are updated simultaneously
in the training and testing process.

III. EXPERIMENTS

All source codes and datasets are provided in this link1. In
this section, we design the experiments to answer the following
questions:

1https://github.com/CRIPAC-DIG/DGCF



TABLE II
THE AMOUNT OF USERS, ITEMS, INTERACTIONS AND ACTION REPETITION

RATE IN EACH DATASET.

Data Users Items Interactions Action Repetition

Reddit 10000 1000 672447 79%
Wikipedia 8227 1000 157474 61%
LastFM 1000 1000 1293103 8.6%

Q1: How does DGCF perform compared with other state-
of-the-art dynamic or sequential models?

Q2: What is the influence of three types of embedding
update mechanisms (zero-order inheritance, first-order prop-
agation, second-order aggregation) in DGCF?

Q3: What is the effect of different aggregator functions in
second-order aggregation on model performance?

Q4: How do different hyper-parameters (e.g. aggregation
size) affect the performance of DGCF?

A. Datasets Description

To evaluate the proposed model, we conduct experiments
on three real-world datasets. The amounts of users, items and
interactions for datasets and their action repetitions are listed in
Table II. It is worth emphasizing that the three datasets differ
significantly in terms of users’ repetitive behaviors. Here is
the details of the datasets:

Reddit: This dataset contains one month of posts made by
users on subreddits [21]. The 10,000 most active users and the
1,000 most active subreddits are selected and treated as users
and items respectively, and they have 672,447 interactions.
Besides, each post’s text is converted into a feature vector to
represent their LIWC categories [22].

Wikipedia edits: This dataset contains one month of edits
on Wikipedia [23]. The editors who made at least 5 edits
and the 1,000 most edited pages are filtered out as users
and items for recommendation. This dataset contains 157,474
interactions in total. Similarly, the edit texts are converted into
an LIWC-feature vector.

LastFM: This dataset contains the listening records of
users within a month [24]. 1000 users and the 1000 most
listened songs are selected as users and items, and 1,293,103
interactions are in this dataset. Note that interactions do not
have features in this dataset.

All user-item interactions are arranged in chronological
order. Then we split the training, validation and test set in
a proportion of 80%, 10%, 10% for each dataset. For each
interaction (u, v, t, f) in the test set, our goal is to use the
given u and v to predict the item that the user is most likely
to interact with at time t.

B. Compared Methods

To evaluate the performance of DGCF, we compare it with
the following baseline methods:
• LSTM [17]: It is a variant of RNN whose name is

Long Short-Term Memory (LSTM). LSTM updates user
(session) embedding by inputting a sequence of historical

interacted items of the user into the LSTM cell, which
could capture the long-term dependence of the item
sequence.

• Time-LSTM [25]: It uses time gates in LSTM to model
time intervals in the interaction sequences.

• RRN [7]: Recurrent Recommender Network (RRN) pre-
dicts future trajectories to learn user and item embeddings
based on LSTM.

• CTDNE [10]: It is a state-of-the-art model in generating
embeddings from temporal networks, but it only produces
static embeddings.

• DeepCoevolve [26]: It is based on co-evolutionary point
process algorithms. We use 10 negative samples per
interaction following the setting of [8].

• Jodie [8] : It is a state-of-the-art model in dynamic rec-
ommendation problem. It defines a projection operation
to predict dynamic embedding trajectory.

C. Experimental Settings

1) Evaluation Metrics: Two evaluation metrics are used
to measure the performance of our DGCF framework:

(1) Mean Reciprocal Rank (MRR) supposes the model
produces a list of recommended items to a user, and the list
is ordered by confidence of the prediction. With MRR, we
can measure the performance of the model with respect to the
ranking list of items. Higher MRR score means target items
tend to have higher rank positions in the predicted item lists.
Formally, MRR is defined as:

MRR =
1

|N |

|N |∑
i=1

1

ranku
, (20)

where ranku represents the rank position of the target item
for user u.

(2) Recall@10 means the number of target items that are in
the top-10 recommendation lists. To calculate recall@10, we
use equation

Recall@10 =
nhit
ntest

, (21)

where nhit is the number of target items that are among the
top-10 recommendation list and ntest is the number of all test
cases.

2) Parameter Settings: We implement DGCF framework
in Pytorch2. The dimensionality of embeddings is 128 for
all attempts. We use randomly sampled vectors in Gaussian
distribution with a mean of 0 and a variance of 1 to initialize
embeddings of the users and items. Features of users and items
are one-hot vectors. Adam optimizer with learning rate 1e−3,
L2 penalty 1e − 3 is adopted in our model. The smoothing
coefficients λ and α in loss function are set to 1. We run 50
epochs each time and select the best attempt based on the
validation set for testing. For comparison methods, we mostly
use the default hyperparameters in their paper.

2https://pytorch.org/



TABLE III
EXPERIMENTS ON THREE DATASETS COMPARE DGCF WITH SIX BASELINE
MODELS BASED ON MEAN RECIPROCAL RANK (MRR) AND RECALL@10
(R@10). THE BOLD AND UNDERLINED NUMBERS MEAN THE BEST AND

SECOND-BEST RESULTS ON EACH DATASET AND METRIC, RESPECTIVELY.
”IMPROVEMENT” MEANS THE MINIMUM IMPROVEMENT AMONG ALL

BASELINES.

Models LastFM Wikipedia Reddit

MRR R@10 MRR R@10 MRR R@10

LSTM 0.081 0.127 0.332 0.459 0.367 0.573
Time-LSTM 0.088 0.146 0.251 0.353 0.398 0.601

RRN 0.093 0.199 0.530 0.628 0.605 0.751
CTDNE 0.010 0.010 0.035 0.056 0.165 0.257

DeepCoevolve 0.021 0.042 0.515 0.563 0.243 0.305
Jodie 0.239 0.387 0.746 0.821 0.724 0.851

DGCF 0.321 0.456 0.786 0.852 0.726 0.856

Improvement 34.3% 27.7% 5.4% 3.6% 0.2% 0.5%

D. Performance Comparison (Q1)

To prove the superiority of our proposed DGCF model, we
conduct experiments on three datasets and compare our model
with six baseline methods. Table III shows that DGCF signif-
icantly outperforms all six baselines on the three datasets ac-
cording to both MRR and Recall@10. Especially on LastFM,
the improvements are 34.3% on MRR and 27.7% on Re-
call@10. Based on the experimental results shown in Table
III, we find three following facts:
• DGCF yields significant improvements on LastFM. Be-

sides, compared with Jodie, the improvements on Reddit,
Wikipedia, and LastFM are in an increasing order, which are
consistent with the repetitive action pattern in the datasets.
The main reason for the improvements might be that DGCF
explicitly considers the collaborative information in the
graph. LastFM dataset includes users and their listened
songs. Intuitively, users tend to listen to different songs that
belong to similar genres, and that is why LastFM dataset
has a low action repetition. In this case, it is not easy to
make recommendations only based on sequences. However,
with collaborative information we utilize in DGCF, we
can find similar sequences from other users and make
recommendations. It can be proof that DGCF can deal with
low action repetition situation.

• In DGCF, the improvements on MRR are greater than on
Recall@10. It may result from projection functions and the
evolutionary loss. Because our loss considers the future
time, the predicted results corresponding to different time
stamps tend to be different. In this case, our model has a
better performance on the ranking of recommended items.

E. Ablation Study (Q2)

As the three update mechanisms are crucial in DGCF, we
measure their effectiveness respectively by conducting exper-
iments. We compare our model with different ablation mod-
els: (1) DGCF-0: DGCF without zero-order inheritance. (2)
DGCF-1: DGCF without first-order propagation. (3) DGCF-2:
DGCF without second-order aggregation. The DGCF here uses
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Fig. 3. Ablation Study. It shows different node relations affect the perfor-
mance of the model. Due to the different characteristics of datasets, The results
are different on several datasets.

graph attention as its aggregator function. Figure 3 summarizes
the experimental results.

Compared with ablation models, DGCF achieves the best
on all datasets, which proves the effectiveness of each module
of our model. The following observations are further derived
from the results:
• On the LastFM dataset, we find that DGCF-2 shows ev-

idently lower performance than others. Since the second-
order update is capable of finding the users who like the
same songs, it is plausible that second-order aggregation is
advantageous on the LastFM dataset. For example, when
a user does not have many repetitive actions to indicate
his/her interests, our model is still capable of modeling the
user based on the similarity with other users. As mentioned
in Q1, DGCF is able to deal with low action repetition
datasets. Without the second-order update, our model cannot
achieve similar results on LastFM. As a result, it proves the
correctness of this assumption.

• Compared to DGCF, DGCF-0 and DGCF-1 tend to be
stable. It shows that when the model lacks sequential
information or current interaction information, second-order
aggregation can still have a decent performance by taking
advantage of collaborative information.

F. Aggregator Function (Q3)

In this subsection, we test the effectiveness of Mean, LSTM,
and Graph attention aggregator functions respectively. The



TABLE IV
AGGREGATOR FUNCTION. THE INFLUENCE OF DIFFERENT AGGREGATOR

FUNCTIONS ON THE MODEL PERFORMANCE.

Aggregator LastFM Reddit Wikipedia

MRR R@10 MRR R@10 MRR R@10

Mean 0.296 0.419 0.721 0.844 0.770 0.836
LSTM 0.291 0.425 0.721 0.841 0.755 0.815

Attention 0.321 0.456 0.726 0.856 0.786 0.852

experimental results are shown in Table IV.
In Table IV, graph attention outperforms the other two ag-

gregator functions on all datasets. It may because that attention
mechanism can learn the strength of the relations between the
central node and its neighbors. In other words, graph attention
is able to explicitly select effective collaborative information
among many second-order neighbor nodes to update user or
item embeddings. Compared with graph attention, the draw-
back of mean and LSTM is that neighbors of the central node
are equally important when performing aggregation, so that
the most influential nodes might be ignored. Different from
the other two datasets, low action repetition dataset LastFM
depends more on second-order aggregation, so the attention
mechanism improves more on it.

G. Hyper-Parameter Study (Q4)

Appropriate aggregator size not only guarantees model per-
formance but also speeds up training and inference. In this sec-
tion, we test the performance of DGCF when applying differ-
ent aggregation sizes. We select graph attention aggregator and
choose the aggregation size as 20, 40, 60, 80, 100, 120. Figure
4 shows the results. According to results, a smaller T can lead
to higher performance. The degradation of performances when
aggregation sizes increase maybe because of the redundancy
of second-order collaborative information. Therefore, we can
reduce the aggregator size to improve training and inference
speed.

IV. DISCUSSION

In this section, we compare the DGCF with two representa-
tive dynamic models, which are RNN and Jodie, to highlight
the main differences and innovative parts of our model.

A. Difference between RNN and DGCF

Recurrent Neural Network (RNN) based models, such as
GRU4Rec [4], NARM [5], are widely used in sequential
recommendation problems. These models take the user’s his-
torical item sequences as input to model the user’s interest.
However, RNN is only a special case of our DGCF when first
and second-order relations are removed. It makes RNN fail
to consider the variations of items as well as the interactions
between users and items.

B. Difference between Jodie and DGCF

Joint Dynamic User-Item Embeddings (Jodie) [8] is a rep-
resentative method of co-evolving based models. It uses two
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Fig. 4. Aggregation size. As the aggregator size changes, the performance
fluctuation of the model on the datasets is small, indicating that the model is
generally robust to aggregator sizes in second-order aggregation.

RNNs, which are user-RNN and item-RNN and projection
operation to predict the embedding of users and items. Our
DGCF model shares similar motivation with Jodie, but com-
pared to DGCF, Jodie is also a special case with no second-
order aggregation. This makes it difficult to explicitly model
the collaborative relation between users and items. Therefore,
when users have few repetitive actions, RNN-based model
cannot achieve satisfactory results, and collaborative relations
play an important role in this case. This difference results in
our significant improvement over Jodie on LastFM dataset,
which has the lowest action repetition rate.

V. RELATED WORKS

In this section, we review related works on dynamic recom-
mendation models, graph-based recommendation and dynamic
graph representation learning. We also include the comparison
between our model and previous methods in the end of each
subsection.

A. Dynamic recommendation

Distinct from static recommendation models like Matrix
Factorization (MF) and Bayesian Personal Ranking (BPR), the
main task of dynamic recommendation models is to capture
the variations of users and items. Recently, Recurrent Neural
Network (RNN) and its variants (LSTM and GRU) are widely
used in the dynamic recommendation problems. Hidasi et al.
[4] apply RNN in session-based recommendation, which is a



sub-problem of dynamic recommendation, to model the fluc-
tuation of users’ interests. Time-LSTM [25] combines LSTM
with time gates to model time differences between interactions.
Although the RNN model has made great progress in the
sequential or dynamic recommendation, it has shortcomings in
long-range dependence. To solve the problem of long-distance
dependence, NARM, Stamp, and SasRec [5], [27], [28] utilizes
attention mechanism to capture users’ main purposes, and also
improve the training speed. Besides, CNN models [29] are also
introduced to dynamic recommendation. However, all these
methods only utilize the item trajectory of a user to model
variations in the user’s interest, while ignoring the evolution
of items.

To deal with this problem, some methods that jointly learn
representations of users and items by using the point process
model [26] and RNN model [7]. Jodie [8] predicts user
and item embedding with RNN and projection operation. All
methods above are recommendation models based on RNNs
from different perspectives. They mainly deal with the item
sequences or user sequences in the temporal order. However,
collaborative signal, which means indirect connections be-
tween user-user or item-item, is not used among these works.
Therefore, in the DGCF, we not only consider both user and
item sequence, but also exploit high-order neighbors in the
user-item graph to enrich the training data.

B. Graph-based recommendation

Users, items, and their interactions can be seen as two types
of nodes and edges in a bipartite graph. The advantages of
modeling user-item interactions as a graph are: 1) graph-based
algorithms like random walk and Graph Neural Networks
(GNNs) can be applied to predict links between users and
items. 2) High-order connectivity can be explored to enrich
training data. Because of the ability to reach high-order neigh-
bors, random walk is tried in making recommendations on the
interaction graph. HOP-Rec [30] performs random walks on
the graph to consider high-order neighbors. RecWalk [31] is
also a random walk-based method that leverages the spectral
properties of nearly uncoupled Markov chains for the top-N
recommendation. However, random walk-based methods have
an issue of lacking robustness.

Nowadays, GNNs show remarkable success in many appli-
cations [32]–[38]. The effectiveness of GNNs is also proved
on recommendation problems. GCMC [39] applies Graph
Convolutional Networks (GCN) [16] in completing the user-
item matrix. PinSage [40] introduces GraphSAGE [15] into
recommender system on item-item graph. Spectral CF [13]
leverage spectral convolution over the user-item bipartite graph
to discover possible connections in the spectral domain. SR-
GNN [14] and A-PGNN [41] use GNNs on session-based
recommendation. BasConv [42] leverages graph convolution
to user-basket-item graph embedding. NGCF [12] propagates
user and item embeddings hierarchically to model high-order
connectivity. Although these methods achieve significant per-
formances on static recommender system, all of them fail
to make use of the influence of time, and the dynamics in

users and items are not well considered among these methods.
Therefore, we take the graph-based recommendation models
under a dynamic graph framework to combine graph structure
with time series.

C. Dynamic graph representation learning

Representation learning over graph-structured data has re-
ceived wide attention [15], [43]–[45]. It aims to encode
the high-dimensional graph information into low-dimensional
vectors. However, in real-world graph data like social networks
and citation networks, the graphs are always evolving. To
deal with this problem, the graph encoding methods should
also consider the dynamics of data, and we call this kind of
methods as dynamic graph representation learning.

Previously, some preliminary methods take the evolving
graph as snapshots during the discrete-time. DANE [46] pro-
poses an embedding method on dynamic attributed network.
It models the variations of the adjacency matrix and attribute
matrix based on matrix perturbation. DynGEM [47] trains
a deep autoencoder based model across snapshots of the
graph to learn stable graph embeddings over time. TIMERS
[48] propose an incremental method based on Singular Value
Decomposition (SVD) for dynamic representation learning.
DyRep [49] defines association and communication events on
dynamic graphs and learning the representation based on graph
attention neural networks. Our DGCF model is motivated by
these works, especially DyRep, to learn dynamic represen-
tations of users and items under recommendation scenarios.
However, the recommendation scenario is different from social
networks because we have two types of nodes and different
influences for dynamic events. Under these circumstances, we
develop our DGCF model to capture dynamics on both user
and item level.

VI. CONCLUSION

In this paper, we associate the dynamic graph with the dy-
namic recommendation scenarios and propose a novel frame-
work based on dynamic graph for dynamic recommendation:
Dynamic Graph Collaborative Filtering, abbreviated as DGCF.
In DGCF, we design three dynamic node update mechanisms
for learning node embedding and making recommendations.
Experimental results show that our model outperforms all
seven baselines.

The proposed DGCF is an initial trial of combining dy-
namic graph with recommender system. Apart from user-item
bipartite graph, many other kinds of graph structure can be
explored with dynamic graph, e.g., knowledge graph, social
network, and attributed graph.
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